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A METHODOLOGY FOR ESTIMATING MISSION RELIABILITY

0.0 Introduction

This research is specifically directed towards estimating

vehicle mission reliability where data is generated from proving

ground or actual field testing. Irn proving ground testing the

mission profile is assumed to be an accurate representation of

field usage. Thus, the mission reliability estimate will be

indicative of that which should be achieved by the vehicle in

actual use conditions. The typical vehicle testing situation

which is the basis for estimation will now be delineated.

In proving ground or field testing there is normally a target

test bogy which is a specified mileage (or kilometers) for the

vehicle. As the vehicle traverses the proving ground, failures

are generated*. This situation is shown pictorially in Figure 1,

below. The vehicle will sometimes not exactly meet the test bogy

Vehicle No. .TIS
] C TA1

1 I IjI l~m oucedt 11 t 12 - - sl 3ustif C- ti-":!

I2 2. I I ; I-

n t nl t n2 t sn JIj t

Figure I Proving Ground Vehicle Testing SituationI
*Actually, failure incidents are generated which are subsequently

scored by an offical Scoring Committee.

.. .. .. .. .. r !! - la -- " ,k~ , ,. ... --> " ' ..... .. .. . ....... .... ....1



due to the randomness associated with a product testing program.

This testing situation is analogous to a random variate

generator where each variate (ti ) is generated by the vehicle

after a repair. It will be assumed that the distribution regen-

erates after each failure. A further, and more complex, approach

would be to assume that the distribution does not regenerate.

Specific approaches to mission reliability estimation will

be adapted to this testing situation. The emphasis was to develop

and present easy-to-use techniques for mission reliability estima-

tion. The approaches considered in this report are: (i) failure

data analysis, (ii) exponential distribution, and (iii) binomial

distribution. Application of each technique is covered in the

following sections.
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SECTION I

FAILURE DATA ANALYSIS BASED ON

TOTAL TIME ON TEST PLOTS

It
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Failure Data Analysis Based on

Total rime on Test Plots

1.0 Introduction

In order to compute mission reliability, we present the

adaptation of a new method in this section. The methods pre-

sented here are non-parametric in nature in the sense that

they do not assume the nature of the underlying failure dis-

tribution. These methods are based on the concept of the

total time on test transform. The mathematical concept of

the total time on test transform was introduced in Chapters

5 and 6 of reference [3]*. The total time on test plot is

useful in choosing a probabilistic model in terms of a failure

distribution to represent the failure behavior of the data.

Thus, by using the methodology presented here, the reliability

* engineer can make a decision regarding which failure distribu-

j tion "best" represents the data. The approach is graphical in

nature and thus is very easy to implement in the Army's environ-

ment. The procedures presented will help the reliability en-

gineer to plot the test data in a systematic way and develop

suitable failure models. Once a decision is made on the selec-

tion of the failure model, mission reliaIbi.ity can be easily

computed.

It is not always necessary to develop the failure model.

From the plots presented here, a hazard function can be easily

developed and hence using the knowledge about the hazard

*See 
page 

71.
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function we can easily compute the mission reliability. The

graphical estimation of the failure rate or hazard rate function

is used to compute the'mission reliability. The methods discussed

here can analyze incomplete data. The total time on test plot

has a theoretical basis, and the mathematical theory for these

plots has been developed [8]. These plots converge to a trans-

form of the underlying probability distribution as the sample

size increases.

5



2.0 Concept of the Total Time on Test Transform

Mission reliability of a military system is evaluated by

testing the system and observing the times when failures occurred.

The underlying distribution is generally not known. Hence,

nonparametric methods will be of tremendous value to evaluate the

mission reliability.

In order to develop the concept of the total time on test

transform, we first present the method of evaluating reliability

based on the assumption that the underlying failure dist-ribution

is exponential [See also page 47].

Suppose we have an ordered sample from an exponential dis-

tribution

f(t) = Xe- , t > 0, X > 0 (i)

or f(t) - e t > 0, 0 > 0 (2)

where X - 1= failure rate

and 0 = mean life or MTBF

We write the ordered sample as

0 = tn t t (3)
U~no~ nl- nn

where the index n means that n items are placed ol test and in

the above case, we observe all the n failures. In case, we only

observe r failures when we have n items on test, then the ordered

sample will be written as

O=tno < tnl <. t (4)

It is clear that the total time on test: is the sum of all

observed complete and incompleto life t imes alnd is given by

T(tr) totalt lime on test (a function of tn)
n r nr

n finl 4 (n-.l)(tn2-tnl) + ... + (n-r+l)(tnr-tn,r-l)

6Li _ _ _ _ _ I'



r=iE t + (n-r)t (5)

1=1 ni nr

Based on total time on test, we can estimate 0, the MTBF

for the system. It is well known [10,11,12] that

r I T(tnr) (6)§r,n r n

is tihe maximum liikel ihood estimator of 0 :ind is the u1i i que

ilillll V;l -i;ln - ;1i 1(l md IIi)i;w:t'd (.:;I i.I 1or of i. 'Te Ibove t I tll.l', l

his becn e'xiensLveLy used for tile evaluation of system reliabi lit v

and the development of confidence bounds with the associated

mathematics given in [14]. However, it must be remembered

that this estimator is based on the assumption that the under-

lying failure distribution is exponential.

'Now, we present the development of the concept of total time

on test where the underlying distribution is not known and is

any arbitrary distribution. Given the ordered sample information

(Eq. (3)), the empirical distribution for the underlying arbitrary

distribution may be written as

0 t < tn1

F n(t) = ni tni < ttn,i+l (7)

I t "- t n
n n

The use of the above empirical distribution is well known

to the engineer. Now, we develop the concept of total time on

test based on the above empirical distribution (See Figure 1).

Let us define

F-1 (u) inf{tIF(t) u (8)

7
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Tn
F n(t)

nn

n

n

n, n n3  ni~ ~ni+l* n,n-1 nnl

t >~

Figure 1 -Empirical Distribution Based on Test Data



1 2 -i
For example, if < u < 2- then Fn (u) = tn2 , and in general for

< u < i+ we haven -- n

-I
Fn (u) = tni, i = 0,1,2,..., n - 1. (9)

Now, let us compute the following intelgral

n n F-)n n

(I - F (u)) du f F (u) du (10)
00

where F (u) = I - F (u). Using eqs. (7) and (9), we haven n

f r
F (u) du = Z [I - j-l1 [t - t ]

0 n j=l n nj n, j-1

E (n - j + l)(t - t )
n j=l nj nj-1

_ 1 [n t + (n-i)(tn2 - ) +. + (n-r+l)n nl n2nl .

(tnr- tn,r-1)]
FI r

n n
or F (u) du = T(t

0

The last equaiton follows from eq. (5). Let us now consider the
r

limiting case when n -a and - v. In this case, it is well

known that

9



F-I n F-(v)

lim f Y (u) d u f F (u) d u (12)

0 0

n O --

r- "1 V

n

uniformly in v,(O < v < 1). Here F(.) is the underlying failure

distribution function and the above statement means that as the

,;ample size n approaches infinity, the empirical distribution

given by (7) converges uniformly to the actual distribution F(.).

Let us define

-' F
1 (v)-

H-(v)A f F(u) du 0 < v < 1 (13)

0

as the total time on test tranform.

For any distribution function F(t), it is well known that

FH (1)
H FI(1) =f F(u) du = expected value of r.v.t. (14)

.* Thus, the basic relationship between the to-al time on

test transform given by (13) and total time on test T(tnr) given

by (5) is

F (v)
Lim 1 T(t) f F (u) du = H-l(v )  (15)n nr Fv

0

-. Vn

j Let us consider the example of an exponential distribution.

We have

G(t) = I - e - t /
, t _ 0, 0 0 (16)

10



Hence, the total time on test trnnsform is given by

1(- (v)
(V) G (u) duG ,f

0

= f e -Ud u

0

(v 0 d G()

-1

G (v)
SO f d G (u)

0

O v , < v < (17)

And, we have

H- I (v )  O
G _ : v, 0< v< (18)

HG1 (v)

Thus, by scaling the total time on test transform by its mean, the

scaled total time on test transform is transformed into a 450

line on the interval [0,1].

111



2.1 Relationship of Total Time on Test Transform to Failure Rate

The total time on test transform is related to the failure

rate for the underlying failure distribution. Let us remember

that the failure rate or hazard rate h(t) is given by [see 14]

h(t) =f(t)

hTt) =(19)

- f(t) f(t) (20)

l-R(t) F(t)

and
t

R(t) = exp [-f h (u) d u] (21)

0

Thus, we see that f(t), F(t), R(t) and h(t) are all related

to each other and the knowledge about any one of them determines

the remaining three. Now, we observe that

dV H(v = F(t) o Iv = F(t)

0

1v

f[F- (v)]
v = F(t)

I - F(t) l-F(t)

f[F- (F(t))] f(t)

= t _ 1 (22)

4 12



Thus, the rate of change of the total time on test transform

is equal to one divided by the associated failure rate. This

means that if we have a plot of total time on test transform, wo

can estimate the failure rate from it.

If the underlying failure distribution F has an increasing

failure rate (IFR), i.e. h(t) increases with t, then the rate

of change of HF 1(v) is decreasing and hence H F I(v) is a concave

function in v, (0 < v < 1). On the other hand, if the underlying

distribution has a decreasing failure rate (DFR), i.e. h(t)

-1
decreaises with C, then HF (v) is a convex function in v, (0 < v <)

This property about the nature of the total time on test transform

can be used to understand the behavior of the failure rate for

the underlying system. This will give us an idea whether the

failure rate is increasing or decreasing during a certain time

period.

From eq. (22), it is also clear that H F determines F if F

is absolutely continuous. Since absolutely continious distributions

are dense in the class of all failure distributions, we see that

HF 1(v) determines F in general. This is an important property

because it tells us that H F (v) determines F and we can use the

total time on test transform for identification of the failure

distribution model for the system.

One of the important concepts in reliability theory is the

concepts of failure rate on an average. A failure distribution

F is said to have increasing failure rate average (IFRA) if the

cumulative failure rate on an average with respect to time

increase with time. Thus, the distribution F is IFRA if

13



tI
I h(u) du t t > 0 (23)

0

From eq. (21), it is clear that

J h(u) du - n R(t) l n F(t) (24)
t

0

Hence, we can restate the definition that distribution F has
increasing failure rate average (F is IFRA) if - log F(t) is

t

increasing (non-decreasing) in t > 0. Similarly, F has decreasing

failure rate average (F is DFRA) if - log F(t) is decreasing
t

(non-increasing) in t > 0.

Now we give the behavior of the total time on test

transform for IFRA and DFRA distributions. If failure distribution

F is IFRA (DFRA), than HF (v)/v is non-increasing (non-decreasing)

in v, 0 < v < I and HF 1(v)/HFI(v) lies above (below) the 450 line.

The proof for this statement is a:; follows.

Let F be IFRA with a probability density function f. Then

as given by eq. (23), we have that

1 h(u) du t t > 0
E j-i

0

where h(t) = f(t)
F(t)

t
Let S(t) f F(u) du, then S(t)/t is always non-increasing

0

in t > 0 becautse F(u) is always non-increasing in t > 0. Also

t

S~t) =(25)
F(t)

in non-increasing in t > 0. Let v = F(t) in eq. (25), then

then we have that HF (v/v is non-increasing in v > 0. Similarly

we can prove the result when F is DFRA.

14



3.0 Failure Distribution Model Identification Hased on Total

Time on Test rrans form

I I W ;#:; po il lfed 4)111 ill I lit I.'t:;I !;(.(.I ioil I 1' 1 lit , I (it a 1 1 il

on test transform H- (v) determines the underlying failure

distribution F. We also showed that for the exponential distri-

bution, if we plot the scaled total time on test transform

(eq. (18)), we get a 45' line on the interval [0, 1]. Thus, a

450 line indicates that the underlying distribution is exponential.

Similarly, we can develop relationships for other distributions.

For the Weibull distribution, we have

F-(
F(t) = 1 - exp[-(-) , t > 0 (26)

where 8 > 0 is the shape parameter and 0 > 0 is he scale

parameter or the characteristic life. We also snowed that

(see eq. (14))

HFI(1) = expected life for Weibull r.v.

= 0 r(l + (27)

The results for the Weibull distribution are given in references

[14,17,18,24, and 25]. In this case,

-l~v

-1(v ) = exp[- (Q) ]dt (28)

0

Based on eqs. (28) and (27), we can plot the scaled total

time on test transforms for Weibull distribution. The approx-

imate shapes for these plots for different values of the shape

parameter 0 are given in Figure 2. It is clear that the plots

15



1.0

OI
HF- 1(v)

H F '(I)

0 V 1.0

Figure 2 - Scaled Total Time on Test Transform for

Weibull Distribution (a is the shape parameter)
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are convex which means that we have decreasing failure rate

for 6 < I and concave which means that we have an increasing

failure rate for 0 > 1. The exponential distribution is the sme as

( = 1 and hence we have a 450 line as proven before.

For the gamma distribution, the probability density function

is

f(t) n tn-I e At t > 0, n > 0, A > 0 (29)

where n is the shape parameter and X is the scale parameter. Also,

HFI(1) = expected life for gamma r.v.

n
A (30)

Again, for the gamma distribution, we can plot the scaled

total time on test plots as given in Figure 3. These plots

are concave functions indicating an increasing failure

rate for n > 1.

For the lognormal distribution, we have

F(t) = [In t - i] (31)

where 0 [.] is the cumulative distribution for the standard

normal variable. Again, for the lognormal distribution, p is

the scale parameter and a is the shape parameter. For each

a > 0, the scaled total time on test plot crosses the 450 line

at most once from above and the approximate shapes for these

graphs is given in Figure 4. The abscissa values for these

cross-over point decreases with increasing a values. Thus, for

some values of a, the failure rate for the lognormal distribution

is neither always an increasing failure rate nor a decreasing

failure rate.

17



1.0

H
HF

0 1.0

Figure 3 -Scaled Total Time on Test Transform for

Gamma Distribution (n is the shape parameter)
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1.0

H F '(v)

0 1.0

Figure 4 -Scaled Total Time on Test Transform for

* Lognormal Distribution (a is the shape

parameter)

19
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The approximate shapes of the total time on test plots for the

trucated normal distribution are given in Figure 6. For the normal

distribution, we always have an increasing failure rate.

20



1.0

H' '(v)
HF'1

0 V -, 1.0

Figure 5 - Scaled Total Time on Test Transform for

Truncated Normal Distribution

21

Ti



4.0 Total Time on Test Plots Based on Test Data

In this section we are going to explain how to plot the total

time on test transform when we have test data for the system

under study. The plots are similar to the scaled total time

on test transforms discussed before. These plots can be used

to identify the underlying failure distribution based on the

shape of the plots as discussed in the last section. The plots

may also be used to evaluate the failure rate and hence the

mission reliability by using the relation

R(t) = exp[-fth(u) du]. (32)
0

Model identification can be aided by the use of transparent

overlays of the scaled total time on test transforms for well

known distributions such as the Weibull, lognortl, normal, gamma,

etc. We are going to discuss the plots for different test

data situations.

I22



4.1 Total Time on Test Plots when all the Failures are Observed

If we put n iteins on te.t and observe all he r, iltires,

Ihl -I) w (. Ir1:1v4. ( ,;t 1,11"I ,',; I )1Ill)w :;.:

0 t- t (33)

Thus all the observations are on the age of failure of

items all of which are put on life test at time 0. Let n(u)

be the number of items working at time 0 < u < tnn. Then it is

clear that

T(t) = total time on test at time t

t

f n(u) du (34)
)

Actually eq. (34) is a finite sum since n(u) is a step function

which is nonincreasing.

Also, remember that (from eqs. (13) & (15))

A F(v)(

HF (v) F(u) du - T(t (35)Fn tnr) !

0

under the conditions mentioned before, i.e. n ,- and v.n

Thus, we plot

T(t n) (36)

T(tn)
nn

versus i 1,2,..., n. This plot is a function on [0, n, n.....

1] to [0, 1] and hence no additional scaling is necessary. This

scaled total time on test plot tends to look like the plot of

scaled total time on test transform of the underlying distribution,

i.e.

23



_____ fo 0 < V 1 (37)

as n and -* v.

4.1.1 Example (Based on example 10.1 in reference [14])

The data in Table 1 represents a 245 hour vibration simu-

lation test on a half-ton truck. The truck was shaken on a

simulator for a total of 245 hours. The time into testing at

which a failure occured was recorded.

Table 1 -Vibration Simulation: Failure Time

on a Half-Ton Truck

21.2 74.7 108.6 157.4

47.9 76.8 112.9 164.7

59.2 84.8 127.0 L96.8

62.0 91.0 143.9 214.4

74.6 93.3 151.6 218.9

1n this case we have n =20 and values in Table 1 are

the times t ni i 1 ,2,...,20. Also t i = 218.9. Hence, we

plot T(t )/T(t versus - for i = 1,2.... ,20. The values for
ni) nn) n

the plot are given in Table 2. The data given in Table 2 is

plotted in Figure 6. The statistical test given in reference

[14] based on which the above example is constructed concludes

that we cannot contradict the hypothesis that the exponential

distribution can be used to model the time to failure for this

system.

24



Table 2 - Values for Scaled Total Time on Test Plot

T(tni )/T(tnn) i T(tni)/T(tnn)

1 0.097 11 0.496

2 0.219 12 0.516

3 0.270 13 0.580

4 0.283 14 0.657

5 0.341 15 0.693

6 0.341 16 0.719

7 0.351 17 0.752

8 0.387 18 0.899

9 0.416 19 0.979

10 0.426 20 1.000

The scaled total time on test transform for the exponential

distribution is a straight line and hence we would expect the

scaled total time on test plot for our system to lie close to

the 450 line. From Figure 6, it is clear that this indeed is

I-lie ca ,e aid t lie p I o croses he 1i 5" 1 line I wo Ii nk ; Thus tilt.

technique of total time on test plot is consistent with

statistically validating the exponential failure model.

25
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1.0

0.9

/

0.8/

0.7.

I 0.6

F (v)

H F (1)0.5 /

0.4

or

0.3

T(t nn)

A1 0.1

0.0 0.1. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

- V i
n

Figure 6: Scale Total Time on Test Plot for the Test

Data for a Half-Ton Truck
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4.2 Total Time on Test Plots with Incomplete Data

One of the important features of the total time on test

plots is that we can evaluate the reliability when we have

incomplete data. Incomplete data may be due to time truncated

testing, censored data or the failure data containing with-

drawals. In addition, the methodology can also handle grouped

data. For all of these situations, we are going to present

the methodology and explain how to plot the total time on test

graphs. The methodology will also be explained by the help of

sample problems which are typical of the military situation

when testing for reliability. Test situations with incomplete

data are very common and hence it is important to have a method-

ology to deal with this situation. There are several reasons

why all the items put on test cannot be tested to failure in-

cluding truncating the test due to economic reasons.

4.2.1 Total Time on Test Plots Based on Grouped Data

In many test situations, failures are recorded in terms of

number of failures within specified time intervals. The actual

times a t which failures occur are not observed. Let us define

the grid on the time axis such that failures are observed during

each interval. Let the grid be

0 WOn< W ln< ... < W. < Wj+l, < ... (38)0I 0 n  n " j,n n "'"

We call te interval [Wjn Wj+ln] a window as this is the

(j+l)th interval during which failures are recorded and the data
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consists of total number of failures during this interval. In

each window, we choose a point .j,nP (perhaps the midpoint),

such that W. < < W .I, jn +1,n

Let Fn (similar as defined by eq. (7)) be an approximation

to the empirical distribution defined at W. and F.. for j = I,.1 .,n 1 ,n~

2, .... ni where m is the minimum index such that: all windows beyond

W have no observations.

Then, using eq. (10), we observe that the total time on

test plot for grouped data is given by

A kH[F =(W )]- E [l-F(C ,n)][Wj , n - Wl] (39)
n ~n =j=l jn jn j-l,n

As n -Q, ,we can prove [3] that the above total time on

test transform for grouped data converges uniformly to HF (t).

4.2. 1. 1 Ixauj1 L v

$ We are interested in evaluating the reliability of a sub-

jsystem of a tank. We are evaluating the reliability based on

field data and 100 subsystems were monitored for failures. We

have the following data

Table 3 - Failures of a Tank Subsystem

Kilometers Number of Failures

I I IO1 0 11

1000 < 1.- 2000 26

2000 t < 3000 28

3000 t < 4000 20

4000 . t < 5000 14

5000 t < 6000 1

6000 < t <0 0

100
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Thus, for this example we have 6 windows or subintervals

during which failures are observed. The grid is uniform because

all the windows are of equal length. The approximation of the

ep i r ic.i I d i:; I - i bw il m i F i:;

Wkf Fn(WknWk,n Fn Wk , n )

1,000 0.11

2,000 0.37

3,000 0.65

4,000 0.85

5,000 0.99

6,000 1.00

Also, if we use the midpoint of each window, we have

'kn Fn( k,n)

500 0.11

1,500 0.37

2,500 0.65

3,500 0.85

4,500 0. 99

5,50.0 100

Hence, using eq. (39), we can compute the following table

for the total time on test transform.
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Fn (Wk, n)  Hn (F (Wkn)

0.11 890

0.37 1,520

0.65 1 870

0.85 2,020

0.99 2,160

1.00 2,170

We also know that Hl(1) is equal to the expected life for

the tank subsystem when n m Hence, the scaled total time

on test plot can be developed using the following table.

v HFI (v)/HF (1)

0.11 0.41

0.37 0.70

0.65 0.86

0.85 0.93

0.99 0.99

1.00 1.00

The scaled total time on test: plot using the data in the

previous table is given in Figure 7. For this plot, it is clear

that the underlying failure distribution has an increasing

failure rate on average property. This distribution may also

be modeled using the Weibull or gamma distribution.
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Figure 7 Scaled Total Time on Test Plot for the

Failures of a Tank Subsystem
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4.3 Total Time on Test Plots with Truncated Data

For several test situations, testing is done for a given

period and is terminated at some point in time Tmax . If we

had n items on test, then we observe r < n failures over the

interval [0, T ma]. Thus, the total time on test for this

situation is (see eq. (34))

T(t) f n(u) du , 0 < t Tma x  (40)

0

For this situation we plot T(tni)/T(Tmax) versus g, i

1,2,..., k. For this we have

-1
T(ni) H (vp) (

T(t H (41)

T(Tmax) HFI (p)

as n - a and - v where p F(Tmax)' Hence, total time on test

data plots should be compared with suitably scaled total time

on test transforms.

i
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4.4 Total Time on Test Plots with Censored Data

I I I ll;iy I I .' II I i.i( i i11:;, W I ace i 1 i i (III:; on I es1 1 and :3 oI)

the test as soon as the' rth (r n) Failure is observed. 'or his

situation we plot

T(tni) i.versus , , i = 1,2,..., r (42)

T(t n)

The underlying limiting convergence for this case is

T(t .) H'nd + (43)

T(tn) - (p)

as n r , -* p and 0 < v <1

Thus, again the total time on test data plots should be

compared with suitably scaled total time on test transforms.

i 3
(I

I
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4.5 Total Time on Test Plots for Failure Data Containing

Withdrawals or Suspended Items

In some test situations, items are taken off of test for

reasons other than failure [14]. For instance, a test may be

stopped if a test stand breaks down or a test vehicle becomes

involved in an accident. Or, we may want to purposely place

more items on test than we intend to fail in order to decrease

the test time. In this section, we are presenting a methodology

to handle suspended items or withdrawals using the concept of

total time on test plots.

Let tl, t2 ' .... tn be independent random variables with

distribution F. Suppose, we only observe

Yi = min (ti, zi) i = 1, 2,... n (44)

where Z..'s are constants. If t. > Zi. then we say that item i

was lost to observation at time k. or the item was susptided at

time .i. Hence, let

tnO tnl < ... *tk (45)

be the observed failure times. For this case, the total time

on test is given by (using eq. (34))

tniT(tni) = f'n(u) du (46)

0

Hence, we plot

T(tni i
versus = ... k(47)

T(tnk)
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For this situation, the model identification is not possible

u:; iii, I f i scaled to( al ( ime o ( e t l' l :; for wel I known dis-

tributions for comparison. However, we can show that the total

time on test plot will tend to lie above (below) the 450 line

if F is IFR(DFR).

4.5.1 Example

Let us consider an example of failure data with suspended

items as given in reference [14]. We put 10 items on test but

only observe six failures and four items are suspended or with-

drawn during testing. The test data is given in Table 4.

Based on this table, the ordered six failure times are

544 < 663 < 897 < 914 < 1084 < 1099

Hence, the total time on test are given in Table 5. The table

has been developed using Figure 8.

Table 4 - Suspended Test Data

Hours on Test Status of Item

544 Failure

663 Failure

802 Suspension

827 Suspension

897 Failure

914 Failure

939 Suspension

1084 Failure

1099 Failure

1202 Suspension

- . . . .. .. .. .. . . . ... .. . .. ... ... _3. .



Table 5 - Total Time on Test

i tni T(t ni) T(tni)/T(t nk) i/k

1 544 5440 0.613 0.166

2 663 6511 0.734 0.333

3 897 8218 0.926 0.500

4 914 8303 0.936 0.666

5 1084 8838 0.996 0.833

6 1099 8868 1.000 1.000

1 "] (544)1I

2 (66 3) F2

3 ' -. 802(S )

4 .* 827(S 2 )

5 - * 897(F 3 )

6 , * 914(F 4 )
7 •* 939(S.)

8 i -'- 1084 (V )

9 -* 1099(1 6 )

10 -o * (1202)S

v V v v

Total Time 5440 6511 8838
on Test|

8303 8868

Figure 8 - Total Time on Test Computation for

the Suspended Test Dnta
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The data given in Table 5 is plotted in Figure 9. This is

the scaled total time on test plot for the failure data with

suspended items. Based on this plot, we can say that the underlying

F;1i I 1 re d is~ I ri bIII i oil I1;1s. inu rcvts Iinp FA I I tre rat v 0I I<).
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Figure 9 Scaled Total Time on Test Plot for Suspended
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5.0 Some Important Results on Total Time on Test Plots

Let the observed failure times with or without censoring be

0 i t 0  < t i  < ... < tnk (48)

as given in section 4.5. If the underlying failure distribution

is exponential as given by

F(t) = 1 - e-t/O (49)

then the total time on test until the next failure is given by

t tnl ftn nk
n(u) du n2 n(u) du, ... n u du (50)

0 tnl tn,k_1

and these are distributed as independent random variables each

with the exponential distribution. Let us make an assumption

about the test p-ocedure such that we observe at least k

failures when n items were put on test at time t = 0. Let

us say that the unit i has age a. when testing commences. It

is withdrawn at time Zi > a. if it does not fail in the interval
1 1

(ai, Zi). Let i = w , i = 1, 2,... ,k (I < k < n) so that we

observe at least k failures. Under this assumption, the random

variables given by eq. (50) are independent and exponentially

distributed. Let us define

U T ti) i = 1, 2. k-I (51)

T(tnk)

Then Uk _ I are distributed as (k-i) order statistics from a

uniform distribution on [0, 1]. Hence,
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E[UkIi ] = i = 0, 1, 2,... ,k-I (52)

and sample plots tend to follow the 450 line on the scaled

total time on test graphs. Since

P[Un- 1i = I - ( - 1)n-l
n ,i n-

1 - e- (53)

we see that, under exponentiality, the plot is likely to lie

with probability I - e - 0.632 initially below the 450 line.

If we have infant mortality this means initially a DFR distribution,

and we would of course expect the plot to initially lie below

the 45'. Now, we state an important theorem for the exponential

dis tribution.
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5.1 Theorem

If F is exponential and we observe n failures during the test,

then

P (Total Time on Test Plot lies above 450 linel

P {Total Time on Test Plot lies below 450 line) (4
_1 (54)
n

Let us compute the probabilities of the following events

associated with the behavior of the total time on test plots.

Let

El1 The plot is initially below and finally below the 450 line.

E The plot is initially below and finally above the 45' line.

E The plot is initially above and finally below the 45" Iiii.

E 4 The plot is initially above and finally above the 450 line.

Then we have from the joint density of Unl and Un,n I

P(E I) = (1 - I)n-1 - (I - 2)n-1 , 0.23
n n

P(E 2 ) = 1 - 2(1 - 1 n-l + (I - 2- , 0.4n n

P(E 3) = (1 - 2)n-1 - (1 - 2) - s0.14
n- n

P(E4  (i - )n-l - (U - 2) fl - 0.23
4)n n

Thus, it is clear that the event E2 is the most likely of

the four events considered above.
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5.2 ConcepLof Stochastic Ordering and Its _pplications to

Total Time on Test Plots

It is important to provide stochastic comparisons of total

t fl)e on test. processes for vri(oti; classes of disf il)tliO io s.

A sIochisl ic )rocte's. IX(I ) () I II stocl;isl ic:l ly dolliw:il (';

(>) a process IY(), 0 t II if

f[{X(t), 0 < t < III >t f[(Y(t), 0 < t < 11] (55)

St

for every increasing functional f. The symbol (>t) means

stochastic or probability ordering.

Based on the concept of stochastic ordering we have the

following result which can be used for stochastic ordering of

total time on test plots.

If the underlying failure distribution is IFRA (DFRA), then

the scaled total time on test plot stochastically dominates (is

dominated by) corresponding plots based on an exponential distri-

bution of the same sample size. We stated before that

HF (t)/HFI(1) lies above (below) the 45' line when F is IFRA (DFRA).

Thus, if the test data plot lies above the 450 line we should

reject an exponential model in favor of an IFRA (or IFR) model.
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5.3 Analysis of Censored Data or Data with Suspended Items

Model identification for censored data is very difficult and

theoretical results are not available at the present time. However,

we can still test for exponentiality versus alternative models.

It is clear that FT < F for all continuous F, where
IT

F(x) , 0 <x < T

FT) W - (56)

Thus the scaled total time on test plots from censored

data always stochastically dominated scaled total time on test

plots from complete data having the same sample size. Similarly,

F < F, where

pp

F (x)
p 

, x Ir(p)

and p, = k so that again the total time on test plots whenn

observations are terminated at the k th failure dominate scaled

plots from complete data having the same sample size.

Many times we have test data where items are suspended.

Thus, the test data indicates that the i th item survived up to

time e%, and after that it was suspended. One can again modelI- I this situation using the concept of stochastic ordering and

prove that the scaled total time on test plot for suspended

items tends t'- lie above the scaled total time on test plot with-

out suspended items.
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6.0 Computation of Failure Rate & Mission Reliability

In Section 2.1, we proved that

d -l (v1

d HF1 (v) (58)

v = F(t)

which is the relationship between failure rate h(t) and

HF I(v). In order to compute empirically the failure rate, we

consider the case when the scaled total time on test plots are

joined by straight lines as shown in Figures 7 and 9. Let

0 = u0 < u, < ... < uk < I be the abscissa values of endpoints of

linear segments. Then the successive slopes of the linear

segments denoted by al, a2 ..... ak+l is given by

[H(uI) - Hn (U )

n n

And, using eq. (58), it is clear that the successive

distribution failure rates are given by

H- 1 (1)
X _ n (60)
1 a.

1

where A. is the failure rate for the i th linear segment. Thus,

we assume that we have a constant failure rate A. in the interval

ti I < t < ti  i = 0, 1,..., k. In order to compute ti, we

can approximate the underlying distribution by a piecewise

exponential distribution with different failure rates. The

cumulative failure rare A(tr)!estimate at the time tt is given by
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r (t 1 . (61)

Hence,

r
U r =F(t r) exp[- Z~ A (t1 - ti 1)] (62)

Thus, t. s can be recursively computed. We have

tj= -[log (1-u1)]/X1  (63)

and in general

r-1
Li o~-ur xi 0 1 i-1)]/Ar + r1(64)

After we have computed the failure rate A. for the interval
3-

t <t < ti, we can compute the mission reliability for any

mission of duration T by observing that

Mission Reliability = R(T)

T
= exp[-f Ii(u) dul (65)

[fence, eq. (65) can be approximated by

R(T) =expE- _ E .t X t (T - t](66)
i-l 3- . ti-i rl rd

where T is such that t r< T <trl
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THE EXPONENTIAL DISTRIBUTION AND

MISSION RELIABILITY ESTIMATION

1.0 Introduction

The exponential distribution is an extremely popular and

easy to use distribution. It is applicable during the useful

life portion of a vehicle system when the failure rate can be

assumed to be constant. Thus, it would not be applicable for

extended predictions concerning vehicle durability.

2.0 The Basic Statistical Model

The p.d.f. for an exponentially distributed random variable

t is given by

f(t) =ie-t/e t 0 (I)

In typical vehicle testing the quantity t, would represent the

miles (or kilometers) between failures (MMBF). The parameter

o is the mean miles between failure. The failure rate is given

by X where

= /0 (2)

The shape of the exponential p.d.f. is shown in Figure 1. In

this figure R(t) is the reliability. Analytically the reliability

function is calculated by

R(t) e- t/0  t>0 (3)

Or, using the failure rate

R(t0) (4)
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Vehicle Life

Figure 1 The Exponential Life Distribution (p.d.f.)

48



The MMBF for the exponential distribution is given by the

parameter 0. The chances of surviving this time can be found

from equation 3. Substituting into this equation gives

R(0) = e- = 0.368 (5)

Or, there is only a 37% chance of surviving the mean life when

the underlying distribution is exponential.

EXAMPLE 1

The mission length for a 5-ton truck is specified

as 75 miles. The MMBF is 2,150 miles. Let us find the

mission reliability.

Using equation 3 with e = 2,150 miles we find

R(75 miles) = e -75 / 2 '150 = 0.97

which is the mission reliability.

EXAMPLE 2

The required mission reliability for an armored

personnel carrier is 0.92 with a mission length of 50 miles.

Assuming an exponential time to failure distribution let's

find the required vehicle MMBF.

Using equation 3 we can find that

0 = tm /ln (I/R ) (6)

where tm is the required mission length and Rm is the

required mission reliability. Substituting into equation

6 we find
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0 50 miles/In (1/0.92) 600 miles

this means that a 600 mile MMBF is required to achieve

the des'-red reliability goal. Or, saying this another

way, the mission failure rate can be no greater than

A = 1/600 = 1.67 X 10- failures/miles

2.1 Goal Setting Using Mission Reliability

Goal setting using mission reliability rather than vehicle

MMBF can be dangerous if one is not familiar with the consequences.

Figure 2 illustrates the percent improvement needed to accomplish

a given improvement in mission reliability. This trade off

is dependent on the initial reliability level of the vehicle.

As an example of using Figure 2 say we want a 5. improvement

in mission reliability. If the initial vehicle mission reli-

ability was 80% the required increase in vehicle MMBF would be

28.5%. It should be recognized that such a large change in

vehicle IMMBF is usually extremely difficult to accomplish.

Note also that if the vehicle originally had a 0.90 mission

reliability the required increase in vehicle MMBF would be over

50%, which is impossible to accomplish in most PIP programs.

2.2 Estimating Mission Reliablikty

The duration of testing for each vehicle is normallyI specified by the vehicle developer. Testing is then carried

* out at a designated proving ground. In life testing terminology

this is Type IT (or time) censored life testing.



Tni tiri
Red iuhl I I i y

L.evel

0.70

12

101

W 8 *i-- -*>0.80

6

0

4-

-~ 0.90
'U

2

0.95

10 20 30 40 50

Percent Improvement in Vehicle MMBF

Figure 2: Ilission Reliability Improvement as a Function of
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2.2.1 Point Estimate: The vehicle MMBF is estimated by

_' Total accumulated test miles _ T
Total number of scored failures r

The mission reliability is then estimated as

= tm / 6 (8)

where tm is the mission length.

2.2.2 Confidence Limit Estimate: The lower 100(l-a)% confidence

limit on the vehicle MMBF is given by

2T
< (9)

a, 2r+2

where T is the total accumulated test time and r is the total

number of scored failures. The quantity X2 is obtained
S2r-'

from a chi-square table using 2r+2 as the degrees of freedom.

A convenient approximation based on the normal dis:-ibitlion

is given by

~4T
< 0 (10)"[z + -v4 +3

where z is a standard normal variate[ [11. This approximation is

fairly good with r 5 and gets better with increasing r.

Common values for Z are listed below. j
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Table I: Standard Normal Variates

Confidence Level (1-a) Confidence Factor (z)

Q5197. 1 .6(4)

)O,. I. 281

80% 0.841

70% 0.525
50% 0.0

A convenient way to quickly approximate a 50% confidence

limit is given by

T 6(r+0.75 - (I!

where r is the number of failures.

The 100(1-a)% lower confidence limit on mission reliability

is given by

t /L
e < R (12)

eM - m

where L is the 100(1-a)% lower confidence limit on the MMBF as

calculated from equations 9, 10, or 11. Of course tm is the

mission length.

A 50% lower confidence limit on mission reliability is

conveniently approximated by

-tm(r+0. 75)/T

e <(13)II

53



EXAMPLE 3

Three XM-l tanks were each scheduled for 4,000 miles

of- t o Lin g. The test produiced 26 s(ore(d miss ion Fi lures.

Let's estimate the mission reliability.

Using equation 7 the vehicle MMBF is estimated as

_ 3 tanks X 4,000 mi/tank 462 miles
26 failures

Assuming a mission length of tm = 100 miles, the point

estimate of mission reliability is obtained from equation 8

and is

k t -11/462 7 0.81

The 50% confidence limit is calculated from equation 13

and is

-100(26+0.75)/12,000
e < R- m

0.80 < R

2.3 Sequential Testing

Sequential testing allows one to continually assess

vehicle acceptance on a day by day basis. As soon as an

accept (or reject) decision is made the test is terminated.

This method minimizes testing and is more economical and fuel

efficient. However, sequential acceptance tests are slightly

harder to design.
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The parameter t hat de terrmine a sequien I i al I i fe es I arv

,, . 1I. III I .. " '1 1 4 , .I. I i )1 : lI i I 1 I w 4 , .,, I II Ii ; . 1 1114 Il I ', : i :;

shown in Figure 3. As can be seen in this figure these points

determine the Operating Characteristic (O.C.) curve for the test.

Intermediate points on the D.C. curve can be calculated from

the equation in Table II with i = 0.1 and/or 0.5.

Table II: Calculation of Sequential O.C. Curve

True Value of MBF Probability of Accepting Vehicle

03.

l.-*. -) -

1
(1-A )/(Bi-A i )

1-0

01 0

A-

CL

Once the O.C. curve is decided on, the test is determined.

In order to set up the test boundaries the following quantities

must be calculated.

b 1001 1 (14)0 0 0 1 ln(0 1/ 00)

57



h 0  1I

hy = [0 10] in( lB (15)

ln(-.
h - (16)x ln( 1/00)

These quantities are used to draw the sequential life testing

graph as shown in Figure 4. Both lines are parallel with slope

b. This graph allows monitoring of the test on a day to day

basis showing the results visually.

EXAMPLE 4

A 10-ton Hi-Mo vehicle must demonstrate an MMBF of

2,500 miles in an IP test. It is decided to use a

sequential test in an effort to minimize fuel consumption

by minimizing testing.

In order to design the test the following parameters

are selected

= 0.20

01 = 2,500 miles

= 0.10

00 = 2,000 miles

By using Table II with i = 0.5 an intermediate point on

the O.C. curve is calculated as

00.5 = 2,111
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with a probability of acceptance of 0.22. The resulting O.C.

curve is sketched in as shown in Figure 5. If one does not

like this O.C. curve then the parameters must be changed.

The quantities for the sequential test graph are found

from equations 14, 15, and 16.

In this case,

b = 4.48 X 10- 4 failures/mile

hy = 20,794

h x = 6.740

These factors can now be used to construct the sequential graph.

This is easier to do if the slope is expressed as

b - 4.48 failures (17)
10,000 miles

The points hx and hy are scaled off on the x and y axes as

shown in Figure 6. Straight lines are then drawn through these

points using the slope scale as determined from equation 17.

6
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THE BINOMIAL DISTRIBUTION AND

MISSION RELIABILITY ESTIMATION

1.0 Introduction

A vehicle mission is a precisely defined Cuantity that SPLe-

cifies such things as ground terrain, vehicle speeds, weapon usage,

etc. The test profile can be looked at as a series of vehicle

missions. During testing, the vehicle either succeeds or fails

each mission. When the test is viewed from this standpoint, the

binomial distribution can be used to determine mission reliability.

2.0 Basic Statistical Model

The probabiLity model for this situation is

p(y) =(n) R(lR)n-Y
R , y = 0, 1, 2,...,n (1)

y m

where

R = mission reliability
m

n = total number of missions (completed and attempted)

y = total number of missions successfully completed

The quantity p(y) is the probability of completing y missions

successfully out of n attempts. This is the well known

binomial distribution.

Example I

The mission reliability for an armored personnel

carries is R 0.80. If ') vlicles are sent on i missi(,un
m

what is the probability that at least 'i will succeed?

Here we want

p(y > 3) = p(y = 3) + p(y = 4) + p(y = 5)

which is the probability of three or more successes.
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"ROOMp_

In this case,

p(y) 5 ) 0.8y 0.25-yy
and for example

p (y = 3) =- 0.8-1 0.2' 0.205

Performing similar calculations gives

p(y >, 3) = 0.943

Or, there is a 94.'3% chance that at least three vehicles

will complete the mission.
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(3.0 Mission Reliability Using the Binomial Distribution
3.1 Estimating Mission Reliability

For this testing situation both point and confidence interval

estimates of mission reliability can be obtained. The basic

input data is n, the number of missions attempted and y, the

number of missions successfully completed.

3.1.1 Point Estimate: Ihe -o i lnt es t iIl e fl iss ion re I ib I- I i t v

is obtained by:

= y (2)
m n

3.1.2 Confidence Limit Estimate: An exact 100(1-a)% lower

confidence limit on the reliability is given by

-Y (3)RL = y + (n-y+l) Fit,2(n-y+l),2y

where F is easily obtained from F-tables [16]. *I1so

recall that,

n = total number of missions

y = number of successful missions

The F-tables that are usually available are somewhat limited.

Therefore, it is convenient to have an approximation for the

confidence limit that uses the standard normal distribution.

The lower confidence on mission reliability can be approximated by

RL = (y-) (4)

n+z-I

z the standard normal variate as given in

Table I, below.
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Table I: Standard Normal Variates

Confidence Level(l-a) Confidence Factor (z )

95% 1.645

90% 1.281

80% 0.841

70% 0.525

50% 0.0

Frequently 50% confidence limits are used in reliability

work. Note that the 50% lower confidence limit is approximated

by

R =Y- (5)L n

Example 2

A TOW weapon system has completed a test schedule.

The test is equivalent to 60 missions. Dividing the test

schedule up into 60 missions results in seven failed

missions. Let's estimate the mission reliability.

y =60 - 7 =53 successful missions

out of

n = 60 missions

Then the point estimate for mission reliability is

53Rm = = 0.883

The lower 75% confidence level is found from equation 3,

with

F0 .2 5 8, 106 = 1.31
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substituting into the equation gives

53 0.0835i. 53 + (8"x 1.31)

Or, the 75% lower confidence on mission reliability is

0.835 _< R

If equation 4 was used to approximate the lower limit,

the value obtained would be

52R 0.83860 + 0.675 60(60-53+1)

As can be seen, this approximation provides limits that

are reasonably close to the exact values.

3.1.3 F-avesian Confidence Limits: If one wints to use a

Bayesian approach slightly higher confidence limits will result.

The Bayesian 100(1-(x)% lower confidence limit on reliability is

given by

= (y+l)
(y+l) + (n-y+l) F,2(n-y+l),2(v+l) (6)

This formula was developed under the assumption that Rm had

an equally likely chance of falling anywhere in the interval

[0-11, [See 16, for derivalion]. Thits, tHie above limit might he

considered a conservative Bayesian limit.

Example 3

Reconsidering example 2 with

n = 60

y = 53
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A Bayesian limit can be obtained. The required F value is

F 130.25, 8, 108 1.31

Then the confidence limit is

5 - = 0.837

Or,

0.837 < Rm

II

.
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3. 2 Success jestjng

In planning a reliability test it is sometimes helpful to

know the number of successful missions required to demonstrate

a minimum reliability at a desired level of confidence. The

formulas for this situation will now be given.

For the special case where y = 0 (i.e. no failures), the

lower 100(l-a)% confidence limit on the reliability is

R = I/n

where

S= the level of significance

n = the sample size (i.e. number of missions)

Then with 100(1-,v)/, confidence, we can say t-hat

R < R

where Rm is the true mission reliability.

If we let C = 1 - a be the desired confidence level (i.e.

0.80, 0.90, etc.) then the necessary sample size tfo demonstrate

a desired reliability level is

n - ln(l-C) (8)

inR

For example, if a mission reliability of Rm 0.80 is to he

demonsrated at 90% confidence we have

n - ln(0.10) _ 11In(0.80)

Thus, 11 missions must be completed with no failures. This is

frequently referred to as success testing.
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Example 4

A fuel trailer must be tested to demonstrate that it

has an 80% mission reliability at 50% confidence. Let's

determine the number of missions it must complete without

failure in order to demonstrate the required reliability.

Substituting into equation 8 with

C = 0.50

R = 0.80

gives

In 0.50n ln 90

Or, three successful missions are required.
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